96 research outputs found

    Barbiturates for the treatment of intracranial hypertension after traumatic brain injury

    Get PDF
    In their article on the use of barbiturates for the treatment of intracranial hypertension after traumatic brain injury, Perez-Barcena and colleagues conclude that thiopental was more effective than pentobarbital in decreasing intracranial pressure. Here we discuss the limitations of this study and review areas of controversy surrounding barbiturate use in neurocritical care

    Hyperammonemia: What Urea-lly Need to Know: Case Report of Severe Noncirrhotic Hyperammonemic Encephalopathy and Review of the Literature

    Get PDF
    Purpose. A 66-year-old man who presented with coma was found to have isolated severe hyperammonemia and diagnosed with a late-onset urea-cycle disorder. He was treated successfully and had full recovery. Methods. We report a novel case of noncirrhotic hyperammonemia and review the literature on this topic. Selected literature for review included English-language articles concerning hyperammonemia using the search terms “hyperammonemic encephalopathy”, “non-cirrhotic encephalopathy”, “hepatic encephalopathy”, “urea-cycle disorders”, “ornithine transcarbamylase (OTC) deficiency”, and “fulminant hepatic failure”. Results. A unique case of isolated hyperammonemia diagnosed as late-onset OTC deficiency is presented. Existing evidence about hyperammonemia is organized to address pathophysiology, clinical presentation, diagnosis, and treatment. The case report is discussed in context of the reviewed literature. Conclusion. Late-onset OTC deficiency presenting with severe hyperammonemic encephalopathy and extensive imaging correlate can be fully reversible if recognized promptly and treated aggressively

    High Temperature Triggers Latent Variation among Individuals: Oviposition Rate and Probability for Outbreaks

    Get PDF
    It is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations.Here we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20 °C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20 °C continued to do so when transferred to 12 °C, whereas individuals that laid many eggs at 20 °C reduced their oviposition and laid the same number of eggs as the others when transferred to 12 °C. When transferred back to 20 °C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature.If climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events

    Climate simulations for 1880-2003 with GISS modelE

    Get PDF
    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. The greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic

    The impact of specialized neurocritical care

    No full text

    Less Common Etiologies of Status Epilepticus

    No full text
    corecore